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@ Introduction to sampling and quantization

@ Quantization noise spectral density
@ Oversampling
@ Noise shaping-AX modulation

@ High order multi bit AX modulators

@ Stability of AX A/D converters
@ Implementation of AX A/D converters
@ Loop filter design
@ Multi bit quantizer design
@ Excess delay compensation
@ Clock jitter effects
@ Mitigation of feedback DAC mismatch
@ Dynamic element matching
@ DAC calibration
@ Case study
@ 15 bit continuous-time AY ADC for digital audio 2
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Signal processing systems
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Interface Electronics
(Signal Conditioning)
(A-D and D-A Conversion)
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Signal processing systems

@ Natural world: continuous-time analog signals

@ Storage and processing: discrete-time digital signals
@ Data conversion circuits interface between the two

@ Wide variety of precision and speed

4
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Continuous time signals

Continuous-time analog signal
T T T T T
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s s s s s

@ Signals defined for all t
@ Signals can take any value in a given range
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Discrete time signals

Discrete time signal
T T T
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@ Signals defined for discrete instants n
@ Signals can take any value in a given range
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Digital signals

Sampled quantized(digital) signal
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6VLSB r

5VLSB r

4VLSB r

3VLSB r
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@ Signals defined for discrete instants n
@ Signals can take discrete values kV, sg
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Sampling and quantization

@ A segment of a continuous-time signal has an infinite
number of points of infinite precision

@ Discretization of time (sampling) and
amplitude (quantization) results in a finite number of points
of finite precision

@ Sampling and quantization = Analog to digital conversion
@ Errors in the process?

8
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Signals in time and frequency domains

@ Continuous time signal X (t)

@ Frequency domain representation using its Fourier
transform Xc:(f)

Xe(f) = / Xct () exp(—j2xft)dt
@ Discrete time signal x4[n]

@ Frequency domain representation using its Fourier
transform Xq(v)

Xl = 3 xaln]exp(—j2mvn)
N=—o00
@ Xy[v] periodic with a period of 1 9
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Signals in time and frequency domains

Continuous-time analog signal Fourier transform of a continuous-time signal

0 0 N

0
T, 2T_ 3T_ 4T_ 5T_ 6T_ 7T_ 8T_ 9T_ 10T 0 f 2f
s s s s s s s s s s

Xet(f) = /OO Xet (t) exp(—j2xft)dt

—00

@ Signal bandwidth fy: [Xct(f)| = 0 for f > f,
10
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Signals in time and frequency domains

Discrete time signal Fourier transform of a discrete time signal
MNiss ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Vise
Vs 10
WNiss
NVise
NVise
Viss " "
0 9 T T 9 0 ; ; i H ; ;
0 1 2 3 4 5 6 7 8 9 10 0 05 1 15 2
o0
Xgll= 3 xaln]exp(—j2mvn)
nN=—o0

@ Xy[v] periodic with a period of 1
@ Xq4[v], 0 <v < 0.5 completely defines real x4[n] 44
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Sampling an analog signal

Sampled analog signal
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Viss f ),

Xg[n] = Xt (NTs)

@ Analog signal sampled to obtain a discrete-timeTsignaI
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Sampling

Sampled analog signal Fourier transform of a sampled signal with f =2f

LsB
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Xdq[v] = 'I:']; Z Xet(vfs —n)

n=—o0

@ Copies of signal spectrum at nfs = n/Ts
@ Perfect reconstruction possible for fg > 2fy 13
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Sampling without aliasing

Fourier transform of a sampled signal with fS=2fb

of 14
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Reconstruction from sampled signal

Fourier transform of a sampled signal with fS=2fb

Reconstruction filter
1.0

0 f 2f, 15
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Aliasing during sampling

Fourier transform of a sampled signal with fssz

0 f 2t 16

S
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Sampling followed by quantization

Quantized Sampled analog signal

1A%

6VLSB r g
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Quantization followed by sampling

Sampled continuous-time quantized signal

6VLSB r g
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Quantizer characteristics Quantized sine wave

VLSB ZVLSB 3VLSB 4VLSE 5VLSB GVLSB 7VLSE

@ Nonlinearity results in harmonic distortion
@ Harmonics folded about the sampling frequency

19
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Sampling and Quantization-Spectral density

Spectra of quantized sinewave before and after sampling Quantized sampled sinewave spectrum

4 [ 0.2 0.4 0.6 0.8
Ilf5
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Sampling and Quantization-Spectral density

Spectra of quantized sinewave before and after sampling Quantized sampled sinewave spectrum

RN
L1 Zﬁg}[hjigﬂmj'@f i

15 2 25 3 35 4 0.6 0.8 1
i it

o fs/fin = p/q, large p,q: Closely spaced tones ~ noise
@ fs/fi, irrational: Continuous spectrum
@ Approximated by a constant spectral density

21
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Quantization error model

y I-I"_ vy 5 v
e =Vv-y

@ Modelled as an additive error

22

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



Quantization error distribution

Quantization error

LsB
Pe
area=1
Viss2 /
0 1

\ -VLSB/Z VLSB/Z
VLSB/Z
“Viss

0 VLSB ZVLSB BVLSB 4VLSB SVLSB 6VLSB 7VLSE

@ Quantization error in the range [V, sg/2,V sg/2]
@ Uniform distribution

@ Mean squared value of V%;/12 23
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Sampling and Quantization-Error

Se(f)
area=V? sp/12
V2 s8/6f;
f
0 f/2
Se(V)
area=V? sp/12
V2, gp/6
v
0 1/2

@ Fully correlated to the input signal
@ Statistics independent of the input signal
@ Uniform distribution; mean = 0; variance = V%5 /12

@ White spectral density
@ Modelled as uncorrelated additive white noise
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Sampling and Quantization- SNR

2N level quantizer with V| sg Spacing

Full scale sinewave input—amplitude (2N 1V, gg)
Mean squared signal: (2’\‘—1VLSB)2 /2

Mean squared noise: V35,12

SNR = 322N = 6.02N + 1.78dB

25

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



Sampling and Quantization

Fourier transform of a continuous-time signal

f 2t 26

S
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Sampling and Quantization

Fourier transform of a sampled signal with fS=2fb

0 f 2t 27

S
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Sampling and Quantization

Signal and quantization noise

MA A

2
V{ /6

o

0 f 2t 28

S

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



Oversampling and Quantization

Fourier transform of a sampled signal with fS=4fb

f /2 f 29

S
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Oversampling and Quantization

Signal and quantization noise

1.0

2

VLSB/Gfs f /
b

0 ‘ ‘ ‘ ‘

0 /2 f 30

S
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Oversampling

@ Sample at fg > 2fj,

@ Oversampling ratio OSR = fs/2fi,

@ Filter the noise using a filter of bandwidth f,

@ Mean squared value of error = V%, /12/OSR
@ Increased signal to quantization noise ratio

31
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Oversampling and Quantization- SNR

2N level quantizer with V| sg spacing

Full scale sinewave input—amplitude = 2NV, g
Oversampling ratio OSR

Mean squared signal: (2’\'—1VLSB)2 /2

Mean squared noise: VZ%5/12/0OSR

SNR = 322N OSR = 6.02N + 10log OSR + 1.76 dB

32
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Oversampling and Quantization

Signal and quantization noise

1.0

2
V2 I6f, ) J
0 i R ‘

f/2 f
s

s

@ Move quantization error to filter stopband?

33
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Quantizer

y l-l"_ v y 5 v
e=v-y

@ Hard nonlinearity

@ Modelled as additive error

34
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Linearization of soft nonlinearity

u high |y l— Y
+ gain —/

@ Negative feedback loop
@ Loop gain — co = Erroru —v — 0

35
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Linearization of hardnonlinearity

gain - .

u_3) high |y |- Y

@ Quantizer output cannot equal the input
@ Loop gain — oo = Error [u —v| — oo

36
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Reduce error to zero only in the signal band

u high gain | Y [~ Vv
+ at low freq. _,-l"

@ Negative feedback loop with dc loop gain — oo
@ Small loop gain at high frequencies
@ Error |u — v| — 0 at low frequencies

37
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First order AY modulator

+

U3 A AN v
) 1-z1 1

@ Loop filter is an accumulator
@ Error |u — v| — 0 at low frequencies
@ Differencing followed by accumulation—AX modulator

38
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Noise and Signal transfer functions

\Y z71/1-z71
STF = — =
U 1+z1/1-z1
= Z_l
V 1
NTF = - =
E 1+z1/1-2z71
= 1-z1

39
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Noise transfer function

First order noise transfer function

2.0 \ \ \ \ T \

O Il
0 f /2 40
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Output noise spectral density

1.0 10

shaped quantization noise

shaped quantization noise

Sve(v) = Se(u)|1—exp(—j27w)|2
= 4Se(v)sin?(nv)
Sv.(f) = 4Se(f)sin?(xf /fs)

41
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Output noise in the signal band

[CNN]

fo
= / Sy, (f)df
0

V2 fo
= 4-5B / sin?(rf /fs)df
6fs 0

&Q

LSB 2
4—== of. / (nf /fs)“df
_ Vl_SB7r Zib
12 3\ fs

_ VLSB7r 1\°
12 3 \OSR
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Oversampling with noise shaping

@ Output noise «« OSR 2 with first order noise shaping
@ Output noise o« OSR ™! with no noise shaping
@ Output noise o« OSR ™) with L™ order noise shaping

Tremendous increase in signal to noise ratio with oversampling

43
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Oversampling, Noise shaping, and Quantization- SNR

2N level quantizer with V| sg Spacing

Full scale sinewave input—amplitude = 2N -1V, g
Oversampling ratio OSR

First order noise shaping

Mean squared signal: (2N—1VLSB)2 /2

Mean squared noise: (VZsg/12)(m 72/3)1/0OSR3
SNR = 9 ;22N OSR® = 6.02N + 30log OSR — 3.4dB

44
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Noise transfer functions

@ 1 — z 1 for afirst order AYX modulator

@ Higer order differencing (~ (1 — z*l)N) in higher order
modulators

@ Crucial quantity in the design of delta sigma modulators

45
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A analog to digital converter

u \
» H(2) A/D -

Loop filter

D/A

A

@ Analog to digital converter (Flash) in the forward path
@ Digital to analog converter in the feedback path
@ Output noise in signal band suppressed by noise shaping

Output of the analog to digital converter is the oversampled
digital output v
46
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@ Sampling preserves the signal if fg > 2f,
@ Quantization adds an error V%5 /12
@ Quantization error modelled as additive white noise

@ Oversampling and filtering reduces quantization error in
the signal band

@ Oversampling, noise shaping, and filtering provides a much
higher reduction of quantization error in the signal band

47
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High Order NTFs

T

zZ
z-1
1]

@ For the first order loop

o V(z)=X(2)+(1-2z"YHE(2)
@ STF=1,NTF=1-2z"1

@ Can we do better ?

48
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High Order NTFs

E
z Y/LV
v

X m z Vi
Y. z-1 b z-1
1 2]
E@1-zY
X z | Y, I \
Aﬁ\‘/_ 71 N

o V(z)=X(z)+(1-z"1)?E(2)
@ Second Order Noise Shaping
@ Can be extended to higher orders
49
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High Order NTFs

In-band quantization noise for a first order NTF is

a2 [0 5, A% w3
Q’“m/o wdw_SGw(OSR)

What if the NTF was of the form (1 —z~1)N ?

2
o [T o A T \2N+1
~ A2 dw =
Q 127r/0 YN T 120N ) (OSR>

Increasing order can dramatically reduce in-band quantization
noise.

50
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High Order NTFs
20

10t

/§igna| Band

O,

20 log [NTF|

_70 L i i i
0 0.2 0.4 0.6 0.8 1

Wit
@ Higher order = Reduced in-band noise
@ NTF gain increases at high frequencies (around w = 7).
@ Why cant one go on increasing order ? 51
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Stability of AYX Modulators

9 Y (z) = Lo(z)U(z) + La(2)V(2)
@ Vv is the quantized version of y.

52
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Stability of AX Modulators

U. STF(z) E U.STF@2)
+ +

E.(NTF(z)-1) Y /l\E. NTF(z) V
&)

@ Quantizer is modeled as an additive noise source.
@ V(z) =U(z)STF(z) + E(z)NTF(2)

® Y(z)=U(z)STF(z) + E(z)(NTF(z) - 1)

@ In the signal band, STF(z) ~ 1

@ Quantizer Input &~ (ADC input) + (Shaped Noise)
53
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Stability of AX Modulators
20 ‘ ‘ 20

15¢

10y

100 200 0 100 200
@ Quantizer input for OBG=1.5 and OBG=3.5
54
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Gain of a Nonlinear Characteristic

Gain="?

@ Assume an infinite precision quantizer with saturation.
@ What is its gain ?
@ Gain depends on signal.
@ Black sinewave : Gain =1
@ Red sinewave : Gain<1
55
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Gain of a Nonlinear Characteristic

Gain=7?

@ Gain = Eg‘;g

@ Makes intuitive sense.
@ E(v.y) is the average value of v.y.

@ E(v.y) is a measure of how much the output “resembles”
the input.

56
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Gain of a Nonlinear Characteristic

Gain=7?

If input to the quantizer exceeds the quantizer range

@ Quantizer gain falls.

@ If quantizer gain falls, system poles can move out of the
unit circle.

@ Modulator will become unstable.

@ Signal level dependent loop stability has to be expected .
57
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Intuition about Loop Stability
@ Loop becomes unstable if the quantizer saturates.
@ Saturation occurs if the quantizer input exceeds the
quantizer range.
@ Quantizer Input = ADC Input + Shaped Noise.
@ Conclusions -

@ The maximum ADC input must be smaller than the
guantizer range. (called the Maximum Stable Amplitude
(MSA)).

@ More “shaped” noise — More likelihood of instability.

@ More shaped noise — Lesser in-band noise.
@ An aggressive NTF will have a reduced MSA.

58
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Estimating Maximum Stable Amplitude (MSA)
@ Simulation is the best way.

@ Keep stepping up the input sinewave amplitude.

@ For every amplitude, compute in-band SNR.

@ Beyond the MSA, the closed loop poles move out of the
unit-circle.

@ Noise shaping is lost = In-band SNR falls.

@ Quantizer input tends to infinity.

@ Time consuming.

59
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Estimating MSA Without Sinewave Inputs
@ Originally proposed by Lars Risbo.

@ Put a slowly increasing ramp into the ADC.

@ Beyond the MSA, the closed loop poles move out of the
unit-circle.

@ Quantizer input tends to infinity very rapidly.

@ The value of the ADC input when the quantizer input blows
up is the MSA.

@ Found (empirically) to result in an MSA close to that
predicted by the sinewave method.

@ Much quicker than the sinewave technique.

60
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Estimating MSA Without Sinewave Inputs

1 fg
Vin E I < out
0_|
t

Very Slow Ramp
(0 to 1 over 1 second)

VDAC

61
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Estimating MSA Without Sinewave Inputs

20

15

log(Quantizer Input)

I I I
0.2 0.4 0.6 0.8 1
ADC Input

log(Quantizer Input) versus ADC Input
MSA is about 90% of the quantizer range
62

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



MSA vs OBG for a Third Order NTF

0.9
508 ]
2 . .
= 4-bit quantizer
S
<07
o
Qo
8
p 0.6
EY 3-bit quantizer
=
3
s 0.5f

0'4 i i i i i

2 3 4 5 6 7 8

Out of Band Gain
63
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A Systematic NTF Design Procedure

NTFs of the form (1 — z—1)N have stability problems.

@ Why ?

@ The OBG is too high (2V).

@ This saturates the quantizer even for small inputs, causing
instability.

The MSA is small.

Worse for low quantizer resolutions.

64
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A Systematic NTF Design Procedure Solution
@ Introduce poles into the NTF.

1-zY)"
D(z-1)

@ Recall that NTF (o0) = 1.

@ =D(z=00)=1

@ NTF(z) =

65
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Why do poles help ?
8

1t T : ]

O i i i i
0 0.2 0.4 0.6 0.8 1

Wit
@ Properly chosen poles reduce OBG of the NTF, enhancing
stability.
@ However, stability comes at the expense of increeaesed
in-band noise.
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A Systematic NTF Design Procedure

@ Commonly used pole positions : Butterworth, Chebyshey,
Inv. Chebyshev etc.

@ Coefficients for these approximations readily gotten from
MATLAB.

@ Schreier’s Delta-Sigma Toolbox is an invaluable design aid.
@ One should understand what the toolbox does.

67
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A Systematic NTF Design Procedure

@ Choose the order of the NTF.
@ OSR, number of levels (n) and desired SNR are known.
@ Example : Order = 3, OSR =64, n = 16, SNR = 115dB.
@ Basically, the NTF is a high-pass filter transfer function.
@ Example : Choose a Butterworth Highpass.
@ Choose the 3dB corner of the high pass filter -
@ Example : w3gs = 3.
@ For a Butterworth NTF, specifying the cutoff specifies the
complete transfer function.

68
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A Systematic NTF Design Procedure
@ Get the transfer function from MATLAB
o [b,a] =butter(3,1/8, high)
0.6735 — 2.0204z ! + 2.0204z~2 — 0.6735z2 3
@ H(z) =
1-2.2192z-1+1.7151z-2 — 0.4535z 3
@ MATLAB sets |H(el™)| = 1.

@ Recall that for H(z) to be a valid NTF, H(c0) = 1.

69
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A Systematic NTF Design Procedure
@ Scale H(z) by 06735 to obtain NTF (z).
(1-3z71+3z272-273)

°® NTF(2) = 45519271 4 1.7151z 7 — 0.45357 3
15
\NTF

Y BN

B H

T
0.5t
% 0.2 0.4 0.6 0.8 1

W 70
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A Systematic NTF Design Procedure
@ Find loop filter using e = NTF(z).
@ Simulate the equations describing the modulator.

@ Compute the peak SNR.

@ In our example, we obtain SNR=102 dB after simulation.
@ MSA =0.85.

71

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



A Systematic NTF Design Procedure

@ If SNR is not enough, repeat the entire procedure above
with a higher cutoff frequency for the Butterworth high pass
filter.

@ This will increase the OBG (intuition on this later).
@ The MSA will reduce.

@ If SNR is too high, repeat the entire procedure above with a
lower cutoff frequency for the Butterworth high pass filter.

@ This will decrease the OBG (intuition on this later).
@ The MSA will increase.

72
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A Systematic NTF Design Procedure
@ SNR obtained with 3dB cutoff of 3 is inadequate.
@ So, we increase the cutoff frequency to 7.
@ The peak SNR is around 116 dB.
@ OBG =2.25, MSA=0.8.
@ We are done.
o

This iterative process is coded into synt hesi zeNTF in
Schreier’s toolbox.

73
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A Systematic NTF Design Procedure : Remarks
@ Butterworth is one of several candidate high pass filters.
@ All the zeros of transmission are at the origin.
@ Another useful family is the inverse Chebyshev
approximation.
@ Has complex zeros (on the unit circle).

-40

Butterworth
_60 L.

<

_80,
Inverse Chebyshev

INTF|

—-100y,

-1201

_140 i i i
0 0.01 0.02 0.03 0.04
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The Sensitivity of a Feedback Loop

Xin(2) L@) é V(z)

@ E is a disturbance injected into the feedback loop.

° V(z) = X(2) 1525 + E(@) i

@ If L(z) = o0, V(2) = X(2).

@ The loop rejects E(z), or the loop is insensitive to E(z).

75
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The Sensitivity of a Feedback Loop

Xin(Z) V(Z)

O35

L(2)

@ L(z) cannot be co at all frequencies.

° V(z2) = X(2) 1525 + E(@) i

@ The loop rejects E at frequencies where the loop gain is
high.

@ How effectively this is done is called the sensitivity function.

@ Sensitivity is

1+L(er)
76
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The Sensitivity of a Feedback Loop
@ In a AX loop, sensitivity is the same as the NTF.
Recall : The first sample of the NTF impulse response is 1.

Equivalent to NTF (c0) = 1

(142,27 1) (1+a,z 1 +azz—2)--
(1+b12_1)(1+b22_1+b32_3)---

Poles must be within the unit circle (for a stable loop).

0
°
@ The NTF can be written as
°
)

The zeroes are on the unit circle (or inside).
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The Sensitivity of a Feedback Loop

@ It can be shown that/ log(|1 + ae*|)dw = 0, if
0
‘611’ < 1.

0.4

0.2
\

0

log(|1 + ae'|

0.2 0.4 0.6 0.8 1
W

The area above the 0dB in the log magnitude plot is equal to

the area below the 0dB line. 78
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The Sensitivity of a Feedback Loop
° / log(|1 + aze 1 + aze 12*|)dw = 0
0

if the roots of 1 + a,z~* + azz 2 lie within (or on) the unit
circle.

@ Straightforward to derive, if one accepts the previous result.
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The Sensitivity of a Feedback Loop

/ log [INTF (e/“)|dw =
0

/7r lo ‘ (1 + ale_j‘”)(l + aze_j“’ + a3e_2j“’) oo
0 (1 + ble—jw)(l + bze—j“’ + b3e—3iw) cee

Iog(\1+a1e‘1“’| dw+/ log(|1 + ae ' + aze %) dw

™

ho\

log(|1+bie 1) dw— / log(|1+bye“ +bze 12| dw+- - -
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The Sensitivity of a Feedback Loop

/ log [NTF (e1)|dw =
0

/ﬂ o ‘ (1 + ale_jw)(l + aze‘jw + age_zjw) s
0 (1 + ble—iw)(l + bze_jw + b3e—3l'w) R

/ log(|1 + a;e %) dw+/ log(|1 + a,e ¥ + aze 12| dw —

O

/ log(|14+be %) dw— / log(|1+bye ¥ +bse 12 )dw+- - -
0

= Zero

81

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



The Bode Sensitivity Integral

log INTF (e))|dw = 0
0
The Integral of the Log Magnitude of an NTF is O

10 log [NTF|

0.4 0.6 0.8 1

Wt 82

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



The Bode Sensitivity Integral

20

ol s A A

0

20 log [NTF|

| | |
0.4 0.6 0.8 1
Wt

Good inband performance at the expense of poor
out-of-band performance. 83
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The Bode Sensitivity Integral

20

10f

\ el

20 log [NTF|

0.4 0.6 0.8 1

Complex zeros better than choosing all NTF zeros at the
origin. 84
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The Bode Sensitivity Integral

20 log [NTF|
I
w
S

|
0 0.05 0.1 0.15 0.2 0.25 0.3
W

Complex zeros better than choosing all NTF zeros at the
origin. 85
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The Bode Sensitivity Integral

|

20 log INTF|

Higher order = less in-band noise.
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Loop Filter Architectures

U 1 1
T- z-1 z-1

Kz

2z
@
_<

i

I—

Remember : A quantizer = ADC + DAC.
Needs ONE DAC.

Loop filter gain goes to infinity at DC, with order 2.

Both NTF zeros at DC (z = 1).

Called CIFF (Cascade of Integrators Feed Forward)
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Loop Filter Architectures

U 1 @ 1k
- z-1 - z-1
ko/k,

@ Remember : A quantizer = ADC + DAC.

@ Needs TWO DACs.

@ Loop filter gain goes to infinity at DC, with order 2.
°

)

Both NTF zeros at DC (z = 1).
Called CIFB (Cascade of Integrators Feed Back).
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Loop Filter Architectures

ko

Ky Y

<

&

g N
- A z-1 z-1

@ CIFF loop with complex zeros.
@ NTF zeros are at 1 £j,/7.
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Loop Filter Architectures

1 1
- z-1 - z-1
kolky

@ CIFB loop with complex zeros.
@ NTF zeros are at 1 £j,/7.
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Loop Filter Implementation
@ Traditionally done in discrete-time.
@ Implemented using switched-capacitor techniques.

@ Switched capacitor circuits have several advantages.

@ Exact nature of settling is irrelevant, only the settled value
matters.

@ Pole-zero locations of the loop filter are set by capacitor
ratios, which are exteremely accurate.

@ Insensitive to clock jitter, as long as complete settling
occurs.

@ Easier to simulate.

91

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



Loop Filter Implementation Switched capacitor loop filters have
disadvantages too -

@ Difficult to drive from external sources due to the large
spike currents drawn.

@ Upfront sampling : requires an anti-alias filter.

@ Integrator opamps consume more power than
continuous-time counterparts.

@ Require large capacitors to lower kT /C noise.
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Continuous-time Loop Filters

! V,
Vln (t) fi\ L(s) . ADC out Ln]

DAC
Vdac(t)

@ What is the NTF ?

@ How does one design such a loop ?
@ How does this compare with a discrete-time loop filter ?
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DAC Modeling

Out

L =L "HT

NRZ DAC RZ DAC

@ The input to the DAC is a digital code ax that changes
every Ts.

The DAC output is an analog waveform.
Output = >, axp(t —KkTs)
p(t) is called the pulse-shape.

Commonly used shapes are the Non-Return to Zero (NRZ)

and Return-to-Zero (RZ) pulses. 94
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Loop Modeling

ADC Vout [N]
kN
@
Vdac(t)
! NRZ DAC
@ Set input to zero. Ts

@ Replace ADC-DAC with quantization noise e(n).

@ DAC is modeled as a filter with impulse response p(t).
95
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Loop Modeling

eln]
_x%_,

NRZ DAC

Ts

— PO Lis) p—"T—
I[n] = p()*I(t)
KT,

s

@ Break the loop after the sampler.
@ Apply a discrete time impulse.
@ What comes back is I[n] = p(t) = I(t)|kr..

@ The z-transform of I[n] is the equivalent discrete time loop
filter. 96
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A First Order Example

Vin

- % ~ Vout

T —F— 77

1 1

@ Discrete-time equivalent impulse response of the loop filter
0,1,1,11---

o L(z)=-L"

T 1-z1

® NTF(2) = iy =1-2""

97

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



A Second Order Example

K, e(n)
Vin 1 1 k2 + TS: V_OUt
T S S
ky

U)|H
|H
el
+
o
7\ 1
H

@ Say we need NTF(z) = (1 —z71)2

@ Discrete-time impulse response through k;
ki(re(t) —ra(t —1)) ={0, kq, ka, ky, kg ---}

@ Discrete-time impulse response through k;
ka(ra(t) —ra(t — 1)) = 3{0, ka, 3kp, 5kp ---} 98
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A Second Order Example
@ Discrete-time impulse response through k;

ki(re(t) —ro(t —1)) ={0, kq, ka, kg, kg -} =
@ Discrete-time impulse response through k;
ka(r2(t) — r2(t — 1))
kzzil O.5k2271

= 2{0, ko, 3Kp, 5ko, 7Tky -+ -} = (1 _Z_1)2 B 1—z-1"

(kl + 0.5k2)Z_1 + (_kl + 0.5k2)Z_2
(1—2z71) '

klz_l
1-z 1

0 L(z)=

99
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A Second Order Example
(kl + 0.5k2)271 + (_kl + 0.5k2)272

0 L(z)= 1—z-12
@ To achieve NTF(z) = (1 — z71)?, we need
L(z) = 227t —z72
Tz 12
@ =k =15k, = 1.
1.5
T=1
V, s Vout [N
in (t) ( ) % % 1 ADC outL ]
DAC
Vdac(t)
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Continuous-time Sigma-Delta Summary
@ Itis possible to “emulate” a D-T loop filter with a C-T one.
@ The equivalence depends on the DAC pulse shape.

@ The technique can be extended to high order NTFs -

@ From the desired NTF (z), find L(z)

@ Convert L(z) into L(s) using the DAC pulse shape

@ The MATLAB command d2c will do it for you, for an NRZ
DAC.

@ Implement L(s) using any one of the loop filter topologies.

@ A CT loop filter has several other advantages ... listen on.
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The Anti-Aliasing Feature of CT AX Modulators

! \/
Vln (t) fi\ L(s) L ADC out En]

DAC

Vdac(t)

| v
Yo O [ (@) poe |l
L L(s) { DAC

Vdac(t)

@ Move L(s) outside the loop
102
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The Anti-Aliasing Feature of CT AX Modulators

Vin O g () e ¢ aoc ol
L L(s) { DAC
Vdac(t)
V
Vinﬂ L(s) s 5 _ ADC out [n]
T~ L(s) { DAC
Vdac(t)

@ Move the sampler outside the loop
103

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



The Anti-Aliasing Feature of CT AX Modulators
: Vot [N
Vm& L(s) XD—@ . ADC out [N

LV\— L(s) { DAC

Vdac(t)

e[n]
. VOU
Va O ) (%) > é\ [N

N

T L(2)

@ Replace the cascade of the DAC and L(s) by the
equivalent discrete-time filter L(z).
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The Anti-Aliasing Feature of CT AX Modulators

WO @

e[n]
ESR
+ -

Vinﬂ

L(s)

o NTF(z) = 1/(1 + L(2))

Shanthi Pavan Nagendra Krishnapura

- NN
T— L@2)
— 1 Vout ['2]
T 1L
NTF(z)
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The Anti-Aliasing Feature of CT AX Modulators

Vout [Q]

Vi, (©) 1
H L 1+L(2)

NTF(z)

@ Consider a tone at frequency Af in the signal band.

@ Response to frequency Af is L(Af)NTF (Af).

@ In a general ADC, a tone (Af + fs) can alias as Af.

@ What about a CTDSM ?

@ Response to frequency (Af +fs) is L(Af + fs)NTF (Af)

106
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The Anti-Aliasing Feature of CT AX Modulators

|LI(dB)
Alias
Rejection
Af | Af+f, f
Signal band

(Af) |
(Af+fs)

@ Implicit anti-aliasing without an explicit filter !
@ Valuable feature of CT Delta-Sigma modulators1.07

@ Alias rejection is |L A
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Effect of Time-Constant Variations in the Loop Filter

@ On-chip RC’s vary with process and temperature.

@ On an integrated circuit, ratios of like elements are tightly
controlled.

@ We need to only worry only about quantities with
“dimensions”.

@ What happens due to absolute variation of RC time
constants ?

108
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Effect of RC Variations : Intuitive explanation

If all RC time-constants decrease

@ Loop filter bandwidth |LI(dB)
increases.

@ In-band loop gain
increases.

Nominal

RC smaller

@ Lower in-band .

guantization noise -
better in-band NTF

@ NTF must be worse
out-of-band - higher |
OBG. Signal band

log (f)

109
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Effect of RC Variations : Intuitive explanation

If all RC time-constants decrease

|LI(dB)

Nominal

@ Higher OBG for the NTF.

@ Reduced maximum
stable amplitude.

@ Closer to instability.

RC smaller

-

| lo
Signal band 9
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Effect of RC Variations : Intuitive explanation

If all RC time-constants increase

@ Loop filter bandwidth |LI(dB)
decreases.

@ In-band loop gain
decreases.

@ Higher in-band
guantization noise -
poorer in-band NTF.

@ NTF must be better
out-of-band - lower |
OBG. Signal band

RC larger

Nominal

<

Jog (f)

111

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



Effect of RC Variations : Intuitive explanation

If all RC time-constants increase

L|(dB)
RC larger
@ Lower OBG for the NTF.
@ Increased maximum Nominal
stable amplitude.
@ “More” stable.
Signallband Wog ®
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Effect of RC Variations on the NTF
Nominal NTF : Maximally flat with an OBG=3

20 T T T T

INTF (6| (dB)

-100 :
0.2 0.4 0.6 0.8 1
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Effect of RC Variations: Time Domain Intuition
Nominal NTF : Maximally flat with an OBG=3

114
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Effect of RC Variations: Time Domain Intuition
Nominal NTF : Maximally flat with an OBG=3

SLOW LOOP

115
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Excess Delay in CT AX Modulators

Why is there excess loop delay ?

@ Quantizer needs time to make a decision.
@ Finite operational amplifier gain-bandwidth product.
@ DEM logic delay in multibit converters.

116
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Excess Delay in CT AX Modulators
A First Order Example
e(n)

. T=1
Vin s i Vout
X % T~—®

T —F— 7

1 1

@ Loop filter is an integrator.
@ An NRZ DAC is used.
@ Sampling Rate = 1Hz 117

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



Excess Delay in CT AX Modulators

Vin
- % ~ Vout

T —F— 7

1 1

@ Discrete-time equivalent impulse response of the loop filter
0,1,1,1,1---

o L(z)=-2-

T 1-z-1

O NTF(z) = HZ =171

118
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Excess Delay in CT AX Modulators

e(n)

Vin T=1

4’?7%_0 td

1Jti—|_ % 1 ———

t,1 2

Vout

@ In practice, the quantizer needs time to make a decision.
@ Equivalent to a delay ty in the loop.
@ What happens to the NTF of the loop ?

119
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Excess Delay in CT AX Modulators

14;1 % 1 ———

t,1 2

@ Discrete-time equivalent impulse response of the loop filter
{0,1-t4,1,2,1---}={0,2,1,2,1---}+{0,-t4,0,0,0 ---}

-1

0 L(z) =5+ —taz !
_ L@ _ 1-z71
® NTF(z) = 1+L(z) — 17tdz—f+tdz—2
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Excess Delay in CT AX Modulators

J4=05

Xt,=1

@ The order of the system is increased.
@ Becomes unstable forty =1
@ Not surprising - a delay in a feedback loop is always

problematic.
@ Aggressive NTF designs are more sensitive to excess
delay. 121
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Fix for Excess Delay : Basic Idea

t,1 2 3 1 ¢ 1 1

1 f\s
ty1 1y, 1 2 3
2 1 2 3

@ Impulse response of the loop filter with delay
{0,t4,2,2,1---}={0,1,2,1,1---}+{0,-t4,0,0,0 -- -}

@ Add a path with discrete-time response {0,t4,0,0,0---} to
the loop filter.
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Fix for Excess Delay : Basic Idea

Vin Vout

% ly

@ Implementation of feedforward path in the loop.
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Fix for Excess Delay : Basic Idea

K e(n)

Vin_ 1

L

@ Equivalent implementation of loop filter feedforward.

Vout

124
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Fix for Excess Delay : Basic Idea

Vin 1 Vout

@ Eliminate path from the input (small compared to the
integrator output).

@ Excess delay can be compensated by adding a direct
path around the quantizer.

125
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Excess Delay Compensation : Summary

e(n)
T=1

H(s) ? ty
-k

@ Direct path around the quantizer.
@ Modification of H(s) (coefficient tuning).

Vin Vout

@ General approach valid even for high order modulators.
@ Determining coefficients and k best done numerically.
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Clock Jitter in Discrete-time AX ADCs

Jittery Sampling

Vin (©) ( E >Vin [n] () L) : ADC Vou [N]

DAC

Vdac[n]

@ The input is sampled outside the modulator

127
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Clock Jitter in Discrete-time AX ADCs

Error due
io jitter

@ Treat the input as a sinusoid with maximum amplitude A.

@ Error due to jitter at the sampling instant is Atw

@ Assume white clock jitter with RMS value o;.

@ RMS value of noise due to jitter in the signal bandwidth is
o] V2Arf,,/OSR
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Clock Jitter in Continuous-time AX ADCs

Vin (t) @ L(s) ADC Vout [n]

DAC

Vdac(t)

@ The input is sampled inside the modulator.
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The Ideal Sampler/Quantizer

% ADC |~ DAC }v

_I LI 1Clock

@ Input is sampled in the ADC.

@ ADC output code is sampled by the DAC. 130
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The Ideal Sampler/Quantizer

\% ADC |+~ DAC >‘iv

LI 1Clock

@ DAC output analog waveform - fedback into the loopfilter.
@ No delay in the quantizer, no clock jitter.
@ ADC output code is the modulator output. 131
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The Real Sampler/Quantizer

\% ADC |+~ DAC >‘iv

\ A

tgel

_I LI 1Clock

@ ADC needs a finite time for conversion.
@ DAC is clocked tye later.
@ The clock is jittery. 132
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Effect of ADC Sampling Jitter

e(n)
Y  ADC [ = % ADC |
_riricClock _ILr1Clock
e(n)
Vin (t) /9 L(s) | ADC Vout [n]
DAC
Vdac(t)
@ Modelled as an error preceding the ADC.
@ Noise shaped by the loop.
133
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Effect of DAC Reconstruction Jitter

eq(t)
Vy V,
—>» DAC = —~ DAC
_ILI1Clock _I LI 1Clock
Vin (t) fi\ L(s) > ADC Vout [n]
Vdac(t) )
DAC
et)

@ Modelled as an error following the DAC.
@ Equivalent to an error at the modulator input.

@ Degrades performance.
134
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Types of DACs : NRZ versus RZ

NRZ DAC
DAC INPUT CODE OUTPUT

RZ DAC
OUTPUT

1135
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Modeling Clock Jitter in NRZ DACs

y(n)
JITTERY DAC ey OEAL
y(n+
OU;(';')DUT Yo OUTPUT
y(n+1)
y(n-1)
= +

/q* ERROR

[y(n)-y(n-1)]At,

RN

Y(n+1)-y(n)At,.,
136
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Modeling Clock Jitter in RZ DACs

y(n)
JITTERY DAC IDEAL
OUTPUT YO+l outpuT
y(n) y(n-1)

y(n+1)
y(n-1)

2y(n+l)Atn+1

ERROR
ZY(n'l)Atn-l

/X
2y(n-1)At, 15 Aj

ZY(n+l)Atn+1
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Clock Jitter in NRZ versus RZ DACs

@ Error depends on the height & number of transisitions in
the DAC output waveform.

@ NRZ DACs have a transition height y(n) —y(n — 1), one
transistion every Ts.

@ RZ DACs have a transition height 2y (n), two transistions
every Ts.
@ RZ DACs are MUCH more sensitive to clock jitter !
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Clock Jitter in Modulators with NRZ DACs

139
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Effect of Jitter on SNR

&j(n) =ly(n) —y(n-1)] tT(n)
o4
2 2 At
Tej = Tdy T2

y(n) = vin(n) 4+ eq(n) « h(n)

@ Vj, is the input.
@ gq is the quantization noise sequence.
@ h(n) is the impulse response corresponding to the NTF.

y(n) —y(n—1) = vip(n) — Vin(n — 1) + (eq(n) —eq(n — 1)) = h(n)

Due to oversampling, Vin(n) ~ Vin(n — 1) 140
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y(n) —y(n—1) ~ (eq(n) — eq(n — 1))+ h(n)
eq(n) is a white sequence with mean square value o2,
ohy i (1 - e ®)NTF(e)[dw

The in-band noise due to jitter (J) is

UiT 0'|2b T j jwy|2
J~ =5 50 1— e “YNTF(e!*)|°d
T2 ﬂ'OSR/O ’( ) ( )| v
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Effect of Jitter on SNR

2 2 T
OATs  Tish / jw w2
J= 1 — e J*)NTF (e/)[2d 1

T2 70sR J, (A - e INTR(EH)Fdw (1)

@ Observation : The NTF at high frequencies (close to
w = ) contributes the most to J.

@ = NTFs with high OBG result in more jitter noise.

@ Smaller LSB, less jitter noise — multibit modulator less
sensitive to jitter.
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Example Calculation
@ Audio modulator, 24 kHz bandwidth.
® OSR =64 (fs = 3.072 MHz), 4-bit quantizer.

@ Quantizer input range is 2 V.

@ LSB size is 2/16 — 02, = %

@ Assume 100 ps RMS jitter.

@ J=(1.28 uV)2.

@ Maximum Signal Amplitude is 0.83V peak.

@ Signal to Jitter Noise Ratio is 20 Iog(ol'_%%/ﬁ) =113dB

@ Conclusion : 100 ps RMS Jitter is not an issue for 15 bit
resolution.
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Feedback DAC nonlinearity

144
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A analog to digital converter

Y

u \Y
—()r— HE AID

Loop filter

D/IA =

@ Typically 4 bits (16 levels) or less in the quantizer
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Feedback DAC architecture

guantizer output v = d,_ [binary] = b,_; [thermometer]

* * *, * * *
dO ILSB dl 2|LSB d2 4ILSE& bl ILSB bZ ILSB b7 ILSB

© O 0 QO 9

i IDAC i IDAC

Ipac = kl g, k={0,1,...,7}

@ Flash quantizer gives a thermometer coded output

@ Thermometer coded DAC: high accuracy and small loop
delay
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Switched capacitor (discrete-time) AY modulator

Viet | lb’ztpﬁcpl;

%

bs®, c
T —
P+ e
bl_g-: thermometer coded v

@ Array of M capacitors for M + 1 levels

@ Flash quantizer output v

@ Vv capacitors charged to V,¢s and M — v to zero volts
147
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Continuous-time AY modulator

\%

ref j_b 2
= _._

pL
bl_g-: thermometer coded v

@ Array of M resistors for M + 1 levels

@ Flash quantizer output v

@ V resistors connected to Ve and M — v to ground
148
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Continuous-time AY modulator

bl se
S

bZILSB

2 -

”bl_g = thermometer coded v

@ Array of M current sources for M + 1 levels

@ Flash quantizer output v

@ v current sources turned on and M — v turned off
149
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Multi bit versus single bit quantizer

Y

<
®
B
[
[
[
\
<
%
|
:
|

@ Multi bit: smaller LSB =- lower quantization noise
@ Single bit: larger LSB =- higher quantization noise
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Multi bit versus single bit quantizer

straight line fit which one?

) 2,

@ Multi bit quantizer
@ Clearly defined gain
@ Conforms to prediction using linear models
@ Single bit quantizer
@ Signal dependent quantizer gain
@ Deviates from prediction using linear models ¢4
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Multi bit versus single bit quantizer

I =l spt+Aly A
bl by, bg*lg
QO - O

4
0
lIDAC

012345678
quantizer output v

lio=8l sgt+Z Al A
bl*IIOI
0
Z
0
i Ipac
- 0 1

Shanthi Pavan Nagendra Krishnapura
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Multi bit versus single bit quantizer

@ Multi bit quantizer

@ Characteristics not linear due to mismatch
@ Single bit quantizer

@ Characteristics always linear
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Effect of DAC nonlinearity

large gain in the

. signal band
=zero in the
signal band /
u %
~(3) H() AID

Loop filter

nonlinearly related
=uinthe to u in the signal band

signal band

(nonlinear)

@ DAC output equals the input u
@ v related to the input u by inverse nonlinearity of the DAC
154
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Modeling the effect of DAC nonlinearity

u \"
H@) % DIA

Loop filter

(nonlinear)

(ideal)

@ Nonlinear DAC driven by an ideal AX modulator and its
output w analyzed
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Multi bit feedback DAC nonlinearity

A
L= sg+Al full scale

_@_
_@_
_@_

Ibac

— 0123456738
quantizer output v

quantizer output v
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Multi bit feedback DAC nonlinearity

lout[0] =0

lout [8] = Zgzl In

lisg =1/8 Zﬁzl In

DNL Al =1 — I s

INL lek = 32K_; In —nlisg = SK_; Al

157
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Effects of onlinearity

0/l g = 0.001 (0.1%)

8 \

Ideal output

DAC error

158
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Effects of DAC nonlinearity

0/l g5 = 0.001 (0.1%)

40 T

— Ideal output
—— DAC error
20 q

-100

-120 ‘ ‘
f of 3f 158

0 b b b b
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Effects of DAC nonlinearity

@ Distortion
@ Increased in band quantization noise
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Reducing DAC nonlinearity

@ Reduce relative mismatch of DAC elements

® 01/lLsg,0c/C,or/R x 1/vVWL

@ 100x area increase to reduce relative mismatch by 10x
@ Sizing alone cannot help
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Representing v using a thermometer DAC

1 1 1 1 3 3 3 3

@ Vv current sources must be on—multiple possibilities
@ M!/M!(M —v)! combinations can represent v
@ Only one possibility for v = 0 (all off) and v = 8 (all on)
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Different combinations of unit cells for a given input

@ v = 1 can be represented by turning on any one of I;_g
@ Average of all possibilities

18
3 > =g
n=1

is the ideal output!

@ For all v, averaging all possible combinations produces the
ideal output

@ Use different combinations to represent a given code
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Different combinations of unit cells for a given input

0=0.3LSB

IDAC/ILSB
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domization

-

| L

b,
b, b, = b,
b, by » b, =
b, b, - b, -
b bs = b =
bg bg bg -
b, b, = b, »
bg bg r bg
€1 C, C3C4 C5Cq Cy Cg €1 C, C3 Cy4 C5 Cg Cy Cg €1 C, C3C4 C5 Cg C7 Cg
cycle 1 cycle 2
b, g: Thermometer coded v b, L b, L
¢, g: Control signals to b, » b,
DAC unit elements bs m— b »
b, b —
bs » b I
bs . bs .
b, » [ = -
bg bg
€1 C, C3 C4 C5 Cg C7 Cg €1 C, C3C4 C5 Cg Cy Cg
cycle 3 cycle 4
Fixed connections Randomized connections 165
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M x M switching matrix
In each cycle, randomly choose a set of connections
Converts distortion to white noise

M! possible connections in the switch
matrix (9! = 362880)—use a smaller subset

Switch matrix introduces delay in the loop
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Randomization-Butterfly scrambler

b c
o X N7 N7 0 XN
b3 0 C3 S0
> —
24 Sl 54 C4 pu—
5 Cs
26 >32< Ce 1 MUX
C
D~ N A
S3 Sg Se So
0: blue path
{Soof 1: red path

@ Each stage flips across 1, 2, or 4 positions
@ 7 switches instead of 64
@ Only 128 combinations used—but good enougqleil}l practice
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Randomization-results

0/l g5 = 0001 (0.1%)

40 w

——Ideal output
20t m —with DAC error ||
—— with randomization

-100r b

-120 ‘ ‘ ‘

16
0 f, 2f 3, &fb
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AY modulator with randomization

Y

u \Y
—()r— HE) AID

Loop filter

butterfly
scrambler [

n

pseudo random sequence

@ Extra delay in the loop
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Randomization-summary

@ Distortion components converted to noise
@ Increased noise floor
@ Additional loop delay
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Data weighted averaging

@ Cycle through all the current sources as rapidly as possible

171
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DAC nonlinearity

o

1

J dac output Ipc

A
- °
o zZ [ ] [ ]
- [} o
01 2% ¢4 56 7 8
guantizer output v
= .
@) ° [ I ]
012345678 0 19243% 5 6 7 8
. . [ ]
quantizer output v quantizer output v
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Data weighted averaging—dc input

Vi

“time

error } >
) N [ [ N [} time

dac

output °® ° ®
le
'\

N
/l

pattern repeats

after 8 cycles 173
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Data weighted averaging—dc input

@ Accumulated error is zero after a small number of cycles
@ Pattern repeats every M cycles for an M + 1 level DAC
@ Tones at fs/M and its harmonics forv = 1
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Data weighted averaging—arbitrary inputs

—> rotator

Y

D/A

@—> 1-2_1 s
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Data weighted averaging—arbitrary inputs

_%

=l gl extended

lg

S b b Db b

D/A input
176
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Data weighted averaging—arbitrary inputs

lg L L L L Ig L L L L L
I; L L L L l; L L L L L
lg L L L L lg L L L L L
ls L L L L Ig L L L L L
Ig L L L L Iy L L L L

I3 L L L L I3 L L L L

I, L L L L I, L L L L

Iy L L L Iy L L L

[ L L L lg L L L L
I, L L L I, L L L L
lg L L lg L L L
s || [ s [ I ]
Iy L A L L
I3 I3 L L L
I I

accumulated v . .
difference of successive outputs

|1. I1. : :
1
1

quantizer output v
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Data weighted averaging—mismatch shaping

INL(v")
Y 1 v’ N
— - oo D/A 171 ——
1-z
—
zt. e . . e . oee
e e e e

D/A input

@ oo D/A output error bounded by INLmax
@ Finite power at all frequencies

@ 1 -z~ at the output provides first order shaping
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Data weighted averaging—implementation

bis | thermometer | /4 S3.0
to binary accumulator
converter
>
§ bl \l \ / \ / Cq
8 b2 c, N
S b L B c So
[} 3 3
g |l b, X N WM ., _
=~ SN XXX
S S AN )
g s
= ; 7
[N S A N W—
_5' So S1 S, So
osis) e e

@ M input barrel shifter driven by accumulated ADC output

@ Loop delays from thermometer-binary converter,
accumulator, barrel shifter 179
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Data weighted averaging—results

0= 0.001 (0.1%)

——Ideal
——no DWA||

20 m —DWA

-100r :

-120 ‘ ‘ ‘

0 fi 2f, 3f, 1 8be

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters




A modulator with data weighted averaging

u \
—()— HE A/ID

Y

Loop filter

barrel |
shifter [~

A

Y

thermometer
accumulator to
binary

@ Extra delay in the loop
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Data weighted averaging-summary

@ Provides first order mismatch shaping

@ Potential for tones at ~ fs/M with an M + 1 level quantizer
@ For low OSR, tones can be close to the signal band

@ Additional loop delay
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Individual level averaging

I,
'1>.> Ly p L)y EE) > L

@ Cycle through all current sources for each input code
@ Separate pointer for each input code

@ Lesser potential for tones than DWA

@ More noise than DWA
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Data weighted averaging—variants

—_— } —_—

l — . Sl

I, || |

|
Double |6 4 T >
Index 5 - L
Averaging 4 > I — »

I3 L || >

I R 1 [] B

iy L)l - >

1 2 2 3 3 0 4 7 3 5 3 2
o = — >

l — - — » B>

:7 > —» > —» —
Bidirectional |6 ] I > > >
Data 5 — — > >
Weighted N N _NENEN
Averaging |3 | > >

L > — —

1y L] L]

1 2 2 3 3 0 4 7 3 5 3 2
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Data weighted averaging—Vvariants

@ Bidirectional DWA: Opposite directions in each cycle

@ Double index averaging: Separate pointers forv > M /2
andv <M/2

@ DWA with randomization: Randomize the shifts once in
every few cycles to break up tones
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Higher order mismatch shaping

1v

SU__3) sy vector

O/ guantizer
i A M bits
-min() )
se +
H2'1
sv

@ Mismatch shaped by the transfer function Huismatch
@ Deviation from exact shaping due to the constraint
sv| = |v|

@ Complex hardware
186
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Dynamic element matching: tradeoffs

@ Mismatch error reduction
@ High order noise shaping (highest)
e DWA
e ILA
@ Randomization (lowest)
@ Potential for tones
@ Randomization (lowest)
@ High order noise shaping
e ILA
@ DWA (highest)
@ Complexity
@ High order noise shaping (highest)
@ ILA, Randomization
@ DWA (lowest)
@ Excess loop delay
@ High order noise shaping (highest)
o ILA
o DWA 187
@ Randomization (lowest)
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Dynamic element matching: summary

@ Data weighted averaging

@ Best compromise between complexity and performance
@ Works very well with high OSR
@ Potential for tones at low OSR

@ ILA, other DWA variants
@ More complex, less potential for tones
@ Randomization
@ Can also be used for DACs without noise shaping
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Calibration

large gain in the

. signal band ~uinthe
=zero in the =
signal band / signal band
u =\ / 4
= H(2) AID fv) —
Loop filter look up table
= uinthe nonlinearly related
signal band to u in the signal band

D/IA

(nonlinearity f(v))

@ Measure DAC characteristics

@ Duplicate its characteristics in the digital path
@ V' =V 4 ¢ e € v; Lot more bits in v’ than v
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Calibration

/4 /18
AZ ADC fv)
S /18
A3 ADCH——{ 2
f(v)-1 — /10
/4 /10 /10 /4
AS ADC}—¢—{ 26 () A3 mod.f—»
/10 I3
f(v)-1 AY mod.
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Calibration

@ Store only the error to reduce register width

@ Noise shaped quantization (digital AX modulator) to
reduce decimator input width
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Analog calibration

IOUI

|
AR AN
] LﬁﬁTi

@ Calibrate all current sources against a master source

@ Use M 4+ 1 current sources and calibrate one at a time
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Calibration: summary

@ No additional components in the loop = no excess delay
@ Measuring DAC characteristics inline is challenging
@ Additional digital or analog complexity
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CASE STUDY
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A 15-bit Continuous-time AX ADC for Digital Audio Design
Targets

@ Audio ADC (24 kHz Bandwidth)

@ 15 bit resolution

@ OSR =64 (fs = 3.072 MHz)

@ 0.18um CMOS process, 1.8V supply
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Continuous-time versus Discrete-time A continuous-time
implementation was chosen

@ Implicit anti-aliasing
@ Resistive input impedance
@ Low power dissipation
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Architectural Choices
@ Single-bit versus multibit quantization ?
@ Single loop versus MASH ?
@ NTF ?
@ Loop Filter Architecture ?
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Architecture : Single-bit vs Multibit

Single bit quantizer Multibit quantizer
@ Simple hardware @ Complex hardware
@ Gentle NTF @ Aggressive NTF
@ High jitter sensitivity @ Low jitter sensitivity
@ Metastability @ Metastability : no issue
@ Opamp slew rate @ Reduced slew rate

A 4-bit quantizer is used.
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Architecture : Single Loop vs MASH

Matching of transfer functions are needed in a MASH design

@ More complicated
@ Might require calibration

A single loop design is chosen.
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Architecture : Choice of the NTF

A maximally flat NTF is chosen

Small OBG Large OBG
@ High in-band @ Low in-band
guantization noise guantization noise
@ Low jitter noise @ High jitter noise
@ Increased Maximum @ Reduced Maximum
Stable Amplitude (MSA) Stable Amplitude (MSA)

An OBG of 2.5 is chosen as a compromise

201

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



Effect Of OBG On Jitter And Quantization Noise

125

120+
Peak SONR

115

110

SNR (dB)

Peak SINR (50ps jitter)

105

100

Peak SINR (100ps jitter)

L
15 2 25 3 35
Out of Band Gain
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Effect Of Systematic RC Time Constant Variations On The NTF

4.5

ar 30 % Lower 1

w
&
T
L

w
T
L

N
o
T

Nominal

INTF(e)]

N
T
L

30 % Higher

=
o
T
L

203

Shanthi Pavan Nagendra Krishnapura Oversampling Analog to Digital Converters



MSA And SQNR With Systematic RC Time Constant Variations

130 -0.6
125 1o8g
o
A=)
(]
= E
g 120 ]
£
2 <
) @
E; g
Q115 1-12 3
5
£
x
<
110+ 1-14=
105 ‘ ‘ ‘ ‘ ‘ ‘ ‘ _16

0.7 0.8 1.2 1.3 147

0.9 1 11
[RC] " /[RC]

nom
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Simulated Output Bit Stream

Quantizer Output
of
Il

—-10- \ | 4

100 200 300 400 500
n
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Feedfoward versus Distributed Feedback Loopfilters

(@) W= 2.67, = 2.08, = 0.059
W, W,
S

i s

(b) =034, = 0.71, o= 1.225
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Feedfoward versus Distributed Feedback Loopfilters

Feedforward Distributed Feedback

@ First integrator is fasest. @ Third integrator is

@ Third integrator is fastest.
slowest. @ First integrator is

@ First opamp is power slowest.
hungry (for noise @ First opamp is power
reasons). hungry (for noise).

@ Third opamp is low @ Third opamp is power
power (slowest hungry (fastest
integrator). integrator).

@ Small capacitor area. @ Large capacitor area.

A feedforward loop filter is used.
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Loop Filter

G, C, Cq
idaom | I I I
vip Ry ™ om Rz ™ op2 R H om3
_ 100K AL 400K aZ, 500K Az,
m
v r opl rC om2 r op3
L | |
1.05346pF C 730fF 8.6264pF
s
vopt Ry Ry
——YW————
Ray Ry = 337K
vop2 AAA 11
Rat R,y = 506 K
Vop3 — AAA N vom Ry = 112 K
A2
vom3 > vop Ry = 200K
vom2 —_app—| C, = 172fF
voml
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Excess Delay Compensation : Conventional

Rest of Loop Filter

Excess Delay
Compensation

DAC2

DAC1
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Excess Delay Compensation : Proposed

Rest of Loop Filter

—

v

DAC1
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First Opamp
vdda

T T

R i
ms | (—%RZ olp X olm %—i {[_me1

M6 Jl———t M2 M21t——[ M61
I psne

M3 M31

:I E cmfbnl

gnda
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Second Opamp

CMFB First Stage Second Stage
vdda
vim vim vi v
M4 ] [Ls [t E P \]
R,
b e o "
Vemfb

vop vom
Ce — -1

Tl
ll

Vemref
[ m11

vem —["v1e
vail {17

gnda
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Flash ADC Block Diagram

Vtop
Vbot
Vref<0> d<15>
ip —
T im—| 1 I | 4-pit data
Vref<15> db<15> 2 (ADC output)
>
—
o
>
0
. A
mn
Vref<15> d<0> z 15
ip —| o
€ vm:_o ) — to DEM/DAC
Vbot rer<o>
Vitop
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Comparator

Vdda
Vrefp  Vem —Lb
2
L j C KLa M1 M4 C'MOS
. LC b ([ofg [l :
por o Ll i
i | Y D‘
im o— - oy | om
e T e .
L Cp La M2 M3 !
Ld
Vrefm  Vcm —L
(a) gnda

Ld _/_\ [
o e 0[] 1
LC [ [ )

o [\ [\ 214
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Effect of Random Offset in the Comparators

1251
1201

115} T

SNR (dB)
=
=
o
T

1051

100

95 1 1 1 ]
0 0.1 0
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Digital Backend

Therm. to
Binary
Converter
4
14510 15 15
in<0:14> Barrel Shifter La_ltch A
(FLASH <0:14> .
oP ) DAC_in<0:14>
EN (DAC IIP)
demIcIkd
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Unit DAC Resistor

dacp
1.6 MQ
Vrefp —y Y
From Reérence To irﬁt terminals
Generator of first opamp
1.6 MQ
Vrefm —M
dacm
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Reference Generation Circuitry

Vdda
Vref
I I iC !
+
R1 |
(@)
gnd
Vdda
(b) R
| ‘/\/\/\ + (Vrefp'vcm)(lis)
\Y/
gnd @ > W refp N J_
Vdd ~ +_> \/\/\/\ Cl__ — ’l‘Cext
Y Rx Vrefm —
/\N\/ (P (ch - Vrefm)(15/R)
R
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Test Setup and Die Layout
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Test Setup Schematic

vdd Clock (3.072 MHz)
Ibias
500 nA
Vip
4 bits
v 2A Converter ==
cm To Logic Analyzer
- - Vim
Differential
Audio
Source Vrefp Vrefm
chref
09V

0.1 nF
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Measured Dynamic Range
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In Band Spectrum
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Out of Band Spectrum
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Performance Summary

Table: Summary of Measured ADC performance.

Signal Bandwidth/Clock Rate 24 kHz/3.072 MHz
Quantizer Range 3 Vpp,dif
Input Swing for peak SNR -1dBFS
Dynamic Range/SNR/SNDR 93.5dB/92.5dB/90.8 dB
Active Area 0.72mm?
Process/Supply Voltage 0.18 ym CMOS/1.8V
Power Dissipation (Modulator) 90 W
Power Dissipation (Modulator and | 121 uW
Reference Buffers)
Figure of Merit(DR/SNR) 0.049 pJ/level,

0.054 pJ/level
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Some References ...

@ Delta-Sigma Data Converters: Theory, Design and
Simulation
S. Norsworthy, R. Schreier and G. Temes, IEEE Press
The Yellow Bible of AY ADCs

@ Understanding Delta-Sigma Data Converters
R. Schreier and G. Temes, IEEE Press
The Green Bible of AY ADCs
Both the above are essential reading !
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Some References ...

@ Theory, Practice, and Fundamental Performance Limits of
High-Speed Data Conversion Using Continuous-Time
Delta-Sigma Modulators
J. Cherry, Ph.D Dissertation, Carleton University.
Excellent reading on continuous-time Delta-Sigma
modulator design.

@ A Power Optimized Continuous-time AX ADC for Audio
Applications
S. Pavan, N. Krishnapura et. al, IEEE Journal of Solid
State Circuits, February 2008.

Detailed description of the case study discussed in
this tutorial.
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